\(\int \cos ^3(c+d x) \cot ^2(c+d x) (a+a \sin (c+d x))^2 \, dx\) [515]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 114 \[ \int \cos ^3(c+d x) \cot ^2(c+d x) (a+a \sin (c+d x))^2 \, dx=-\frac {a^2 \csc (c+d x)}{d}+\frac {2 a^2 \log (\sin (c+d x))}{d}-\frac {a^2 \sin (c+d x)}{d}-\frac {2 a^2 \sin ^2(c+d x)}{d}-\frac {a^2 \sin ^3(c+d x)}{3 d}+\frac {a^2 \sin ^4(c+d x)}{2 d}+\frac {a^2 \sin ^5(c+d x)}{5 d} \]

[Out]

-a^2*csc(d*x+c)/d+2*a^2*ln(sin(d*x+c))/d-a^2*sin(d*x+c)/d-2*a^2*sin(d*x+c)^2/d-1/3*a^2*sin(d*x+c)^3/d+1/2*a^2*
sin(d*x+c)^4/d+1/5*a^2*sin(d*x+c)^5/d

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {2915, 12, 90} \[ \int \cos ^3(c+d x) \cot ^2(c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {a^2 \sin ^5(c+d x)}{5 d}+\frac {a^2 \sin ^4(c+d x)}{2 d}-\frac {a^2 \sin ^3(c+d x)}{3 d}-\frac {2 a^2 \sin ^2(c+d x)}{d}-\frac {a^2 \sin (c+d x)}{d}-\frac {a^2 \csc (c+d x)}{d}+\frac {2 a^2 \log (\sin (c+d x))}{d} \]

[In]

Int[Cos[c + d*x]^3*Cot[c + d*x]^2*(a + a*Sin[c + d*x])^2,x]

[Out]

-((a^2*Csc[c + d*x])/d) + (2*a^2*Log[Sin[c + d*x]])/d - (a^2*Sin[c + d*x])/d - (2*a^2*Sin[c + d*x]^2)/d - (a^2
*Sin[c + d*x]^3)/(3*d) + (a^2*Sin[c + d*x]^4)/(2*d) + (a^2*Sin[c + d*x]^5)/(5*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 90

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 2915

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*x
)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2,
 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {a^2 (a-x)^2 (a+x)^4}{x^2} \, dx,x,a \sin (c+d x)\right )}{a^5 d} \\ & = \frac {\text {Subst}\left (\int \frac {(a-x)^2 (a+x)^4}{x^2} \, dx,x,a \sin (c+d x)\right )}{a^3 d} \\ & = \frac {\text {Subst}\left (\int \left (-a^4+\frac {a^6}{x^2}+\frac {2 a^5}{x}-4 a^3 x-a^2 x^2+2 a x^3+x^4\right ) \, dx,x,a \sin (c+d x)\right )}{a^3 d} \\ & = -\frac {a^2 \csc (c+d x)}{d}+\frac {2 a^2 \log (\sin (c+d x))}{d}-\frac {a^2 \sin (c+d x)}{d}-\frac {2 a^2 \sin ^2(c+d x)}{d}-\frac {a^2 \sin ^3(c+d x)}{3 d}+\frac {a^2 \sin ^4(c+d x)}{2 d}+\frac {a^2 \sin ^5(c+d x)}{5 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 114, normalized size of antiderivative = 1.00 \[ \int \cos ^3(c+d x) \cot ^2(c+d x) (a+a \sin (c+d x))^2 \, dx=-\frac {a^2 \csc (c+d x)}{d}+\frac {2 a^2 \log (\sin (c+d x))}{d}-\frac {a^2 \sin (c+d x)}{d}-\frac {2 a^2 \sin ^2(c+d x)}{d}-\frac {a^2 \sin ^3(c+d x)}{3 d}+\frac {a^2 \sin ^4(c+d x)}{2 d}+\frac {a^2 \sin ^5(c+d x)}{5 d} \]

[In]

Integrate[Cos[c + d*x]^3*Cot[c + d*x]^2*(a + a*Sin[c + d*x])^2,x]

[Out]

-((a^2*Csc[c + d*x])/d) + (2*a^2*Log[Sin[c + d*x]])/d - (a^2*Sin[c + d*x])/d - (2*a^2*Sin[c + d*x]^2)/d - (a^2
*Sin[c + d*x]^3)/(3*d) + (a^2*Sin[c + d*x]^4)/(2*d) + (a^2*Sin[c + d*x]^5)/(5*d)

Maple [A] (verified)

Time = 0.28 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.06

method result size
derivativedivides \(\frac {\frac {a^{2} \left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )}{5}+2 a^{2} \left (\frac {\left (\cos ^{4}\left (d x +c \right )\right )}{4}+\frac {\left (\cos ^{2}\left (d x +c \right )\right )}{2}+\ln \left (\sin \left (d x +c \right )\right )\right )+a^{2} \left (-\frac {\cos ^{6}\left (d x +c \right )}{\sin \left (d x +c \right )}-\left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )\right )}{d}\) \(121\)
default \(\frac {\frac {a^{2} \left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )}{5}+2 a^{2} \left (\frac {\left (\cos ^{4}\left (d x +c \right )\right )}{4}+\frac {\left (\cos ^{2}\left (d x +c \right )\right )}{2}+\ln \left (\sin \left (d x +c \right )\right )\right )+a^{2} \left (-\frac {\cos ^{6}\left (d x +c \right )}{\sin \left (d x +c \right )}-\left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )\right )}{d}\) \(121\)
parallelrisch \(\frac {a^{2} \left (-480 \ln \left (\sec ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (254 \cos \left (d x +c \right )+16 \cos \left (2 d x +2 c \right )-11 \cos \left (3 d x +3 c \right )+6 \cos \left (4 d x +4 c \right )-3 \cos \left (5 d x +5 c \right )-262\right ) \cot \left (\frac {d x}{2}+\frac {c}{2}\right )-120 \sec \left (\frac {d x}{2}+\frac {c}{2}\right ) \csc \left (\frac {d x}{2}+\frac {c}{2}\right )+480 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+180 \cos \left (2 d x +2 c \right )+15 \cos \left (4 d x +4 c \right )-195\right )}{240 d}\) \(143\)
risch \(-2 i a^{2} x +\frac {3 a^{2} {\mathrm e}^{2 i \left (d x +c \right )}}{8 d}+\frac {9 i a^{2} {\mathrm e}^{i \left (d x +c \right )}}{16 d}-\frac {9 i a^{2} {\mathrm e}^{-i \left (d x +c \right )}}{16 d}+\frac {3 a^{2} {\mathrm e}^{-2 i \left (d x +c \right )}}{8 d}-\frac {4 i a^{2} c}{d}-\frac {2 i a^{2} {\mathrm e}^{i \left (d x +c \right )}}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}+\frac {2 a^{2} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right )}{d}+\frac {a^{2} \sin \left (5 d x +5 c \right )}{80 d}+\frac {a^{2} \cos \left (4 d x +4 c \right )}{16 d}+\frac {a^{2} \sin \left (3 d x +3 c \right )}{48 d}\) \(191\)
norman \(\frac {-\frac {a^{2}}{2 d}-\frac {5 a^{2} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {109 a^{2} \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 d}-\frac {314 a^{2} \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15 d}-\frac {109 a^{2} \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 d}-\frac {5 a^{2} \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {a^{2} \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}-\frac {8 a^{2} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {16 a^{2} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {16 a^{2} \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {8 a^{2} \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{5} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}+\frac {2 a^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {2 a^{2} \ln \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}\) \(268\)

[In]

int(cos(d*x+c)^5*csc(d*x+c)^2*(a+a*sin(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(1/5*a^2*(8/3+cos(d*x+c)^4+4/3*cos(d*x+c)^2)*sin(d*x+c)+2*a^2*(1/4*cos(d*x+c)^4+1/2*cos(d*x+c)^2+ln(sin(d*
x+c)))+a^2*(-1/sin(d*x+c)*cos(d*x+c)^6-(8/3+cos(d*x+c)^4+4/3*cos(d*x+c)^2)*sin(d*x+c)))

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.04 \[ \int \cos ^3(c+d x) \cot ^2(c+d x) (a+a \sin (c+d x))^2 \, dx=-\frac {48 \, a^{2} \cos \left (d x + c\right )^{6} - 64 \, a^{2} \cos \left (d x + c\right )^{4} - 256 \, a^{2} \cos \left (d x + c\right )^{2} - 480 \, a^{2} \log \left (\frac {1}{2} \, \sin \left (d x + c\right )\right ) \sin \left (d x + c\right ) + 512 \, a^{2} - 15 \, {\left (8 \, a^{2} \cos \left (d x + c\right )^{4} + 16 \, a^{2} \cos \left (d x + c\right )^{2} - 11 \, a^{2}\right )} \sin \left (d x + c\right )}{240 \, d \sin \left (d x + c\right )} \]

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^2*(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/240*(48*a^2*cos(d*x + c)^6 - 64*a^2*cos(d*x + c)^4 - 256*a^2*cos(d*x + c)^2 - 480*a^2*log(1/2*sin(d*x + c))
*sin(d*x + c) + 512*a^2 - 15*(8*a^2*cos(d*x + c)^4 + 16*a^2*cos(d*x + c)^2 - 11*a^2)*sin(d*x + c))/(d*sin(d*x
+ c))

Sympy [F(-1)]

Timed out. \[ \int \cos ^3(c+d x) \cot ^2(c+d x) (a+a \sin (c+d x))^2 \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**5*csc(d*x+c)**2*(a+a*sin(d*x+c))**2,x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.24 (sec) , antiderivative size = 94, normalized size of antiderivative = 0.82 \[ \int \cos ^3(c+d x) \cot ^2(c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {6 \, a^{2} \sin \left (d x + c\right )^{5} + 15 \, a^{2} \sin \left (d x + c\right )^{4} - 10 \, a^{2} \sin \left (d x + c\right )^{3} - 60 \, a^{2} \sin \left (d x + c\right )^{2} + 60 \, a^{2} \log \left (\sin \left (d x + c\right )\right ) - 30 \, a^{2} \sin \left (d x + c\right ) - \frac {30 \, a^{2}}{\sin \left (d x + c\right )}}{30 \, d} \]

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^2*(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

1/30*(6*a^2*sin(d*x + c)^5 + 15*a^2*sin(d*x + c)^4 - 10*a^2*sin(d*x + c)^3 - 60*a^2*sin(d*x + c)^2 + 60*a^2*lo
g(sin(d*x + c)) - 30*a^2*sin(d*x + c) - 30*a^2/sin(d*x + c))/d

Giac [A] (verification not implemented)

none

Time = 0.34 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.94 \[ \int \cos ^3(c+d x) \cot ^2(c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {6 \, a^{2} \sin \left (d x + c\right )^{5} + 15 \, a^{2} \sin \left (d x + c\right )^{4} - 10 \, a^{2} \sin \left (d x + c\right )^{3} - 60 \, a^{2} \sin \left (d x + c\right )^{2} + 60 \, a^{2} \log \left ({\left | \sin \left (d x + c\right ) \right |}\right ) - 30 \, a^{2} \sin \left (d x + c\right ) - \frac {30 \, {\left (2 \, a^{2} \sin \left (d x + c\right ) + a^{2}\right )}}{\sin \left (d x + c\right )}}{30 \, d} \]

[In]

integrate(cos(d*x+c)^5*csc(d*x+c)^2*(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

1/30*(6*a^2*sin(d*x + c)^5 + 15*a^2*sin(d*x + c)^4 - 10*a^2*sin(d*x + c)^3 - 60*a^2*sin(d*x + c)^2 + 60*a^2*lo
g(abs(sin(d*x + c))) - 30*a^2*sin(d*x + c) - 30*(2*a^2*sin(d*x + c) + a^2)/sin(d*x + c))/d

Mupad [B] (verification not implemented)

Time = 9.68 (sec) , antiderivative size = 333, normalized size of antiderivative = 2.92 \[ \int \cos ^3(c+d x) \cot ^2(c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {16\,a^2\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4}{d}-\frac {8\,a^2\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}{d}-\frac {16\,a^2\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6}{d}+\frac {8\,a^2\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8}{d}-\frac {2\,a^2\,\ln \left (\frac {1}{{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2}\right )}{d}+\frac {2\,a^2\,\ln \left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d}-\frac {2\,a^2\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{3\,d\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}+\frac {176\,a^2\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{15\,d\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}-\frac {328\,a^2\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7}{15\,d\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}+\frac {96\,a^2\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9}{5\,d\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}-\frac {32\,a^2\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{11}}{5\,d\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}-\frac {5\,a^2\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,d\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}-\frac {a^2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{2\,d\,\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )} \]

[In]

int((cos(c + d*x)^5*(a + a*sin(c + d*x))^2)/sin(c + d*x)^2,x)

[Out]

(16*a^2*cos(c/2 + (d*x)/2)^4)/d - (8*a^2*cos(c/2 + (d*x)/2)^2)/d - (16*a^2*cos(c/2 + (d*x)/2)^6)/d + (8*a^2*co
s(c/2 + (d*x)/2)^8)/d - (2*a^2*log(1/cos(c/2 + (d*x)/2)^2))/d + (2*a^2*log(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/
2)))/d - (2*a^2*cos(c/2 + (d*x)/2)^3)/(3*d*sin(c/2 + (d*x)/2)) + (176*a^2*cos(c/2 + (d*x)/2)^5)/(15*d*sin(c/2
+ (d*x)/2)) - (328*a^2*cos(c/2 + (d*x)/2)^7)/(15*d*sin(c/2 + (d*x)/2)) + (96*a^2*cos(c/2 + (d*x)/2)^9)/(5*d*si
n(c/2 + (d*x)/2)) - (32*a^2*cos(c/2 + (d*x)/2)^11)/(5*d*sin(c/2 + (d*x)/2)) - (5*a^2*cos(c/2 + (d*x)/2))/(2*d*
sin(c/2 + (d*x)/2)) - (a^2*sin(c/2 + (d*x)/2))/(2*d*cos(c/2 + (d*x)/2))